Version Conflict: Version Conflict: Formulas that could be put everywhere
Here is a comprehensive list of important trigonometric formulas involving sine and cosine, presented in a copy-friendly format:
Sum and Difference Formulas
Difference of Sines and Cosines
Product-to-Sum Formulas
Fundamental Trigonometric Identities
Sine and Cosine of Complementary Angles
Double Angle Formulas
Sum and Difference Formulas for Sine and Cosine
These formulas are essential for solving trigonometric equations, simplifying expressions, and working on problems involving periodic behavior in calculus and physics.
Here is a comprehensive list of important trigonometric formulas involving sine and cosine, presented in a copy-friendly format:
Sum and Difference Formulas
Difference of Sines and Cosines
Product-to-Sum Formulas
Fundamental Trigonometric Identities
Sine and Cosine of Complementary Angles
Double Angle Formulas
Sum and Difference Formulas for Sine and Cosine
These formulas are essential for
- sin²θ + cos²θ = 1.
- tan2θ + 1 = sec2θ
- cot2θ + 1 = cosec2θ
- sin 2θ = 2 sin θ cos θ
- cos 2θ = cos²θ – sin²θ
- tan 2θ = 2 tan θ / (1 – tan²θ)
- cot 2θ = (cot²θ – 1) / 2 cot θ
Here’s a full list of important trigonometric formulas involving sine and cosine:
Sum and Difference Formulas
- Sum of Sine and Cosine:
\sin(x) + \cos(x) = \sqrt{2} \cdot \sin\left(x + \frac{\pi}{4}\right)
\sin(x) + \cos(x) = \sqrt{2} \cdot \cos\left(x - \frac{\pi}{4}\right)
- Sum of Sines:
\sin(A) + \sin(B) = 2 \cdot \sin\left(\frac{A + B}{2}\right) \cdot \cos\left(\frac{A - B}{2}\right)
- Sum of Cosines:
\cos(A) + \cos(B) = 2 \cdot \cos\left(\frac{A + B}{2}\right) \cdot \cos\left(\frac{A - B}{2}\right)
Difference of Sines and Cosines
- Difference of Sines:
\sin(A) - \sin(B) = 2 \cdot \cos\left(\frac{A + B}{2}\right) \cdot \sin\left(\frac{A - B}{2}\right)
- Difference of Cosines:
\cos(A) - \cos(B) = -2 \cdot \sin\left(\frac{A + B}{2}\right) \cdot \sin\left(\frac{A - B}{2}\right)
Product-to-Sum Formulas
- Product of Sines:
\sin(A) \cdot \sin(B) = \frac{1}{2} \left[\cos(A - B) - \cos(A + B)\right]
- Product of Cosines:
\cos(A) \cdot \cos(B) = \frac{1}{2} \left[\cos(A - B) + \cos(A + B)\right]
- Product of Sine and Cosine:
\sin(A) \cdot \cos(B) = \frac{1}{2} \left[\sin(A + B) + \sin(A - B)\right]
Fundamental Trigonometric Identities
- Pythagorean Identity:
\sin^2(x) + \cos^2(x) = 1
- Sine and Cosine of Complementary Angles:
\sin\left(\frac{\pi}{2} - x\right) = \cos(x) \quad \text{and} \quad \cos\left(\frac{\pi}{2} - x\right) = \sin(x)
Double Angle Formulas
- Double Angle for Sine:
\sin(2x) = 2 \sin(x) \cos(x)
- Double Angle for Cosine:
\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)
Sum and Difference Formulas for Sine and Cosine
- Sum of Angles:
\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)
\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B) ]
- Difference of Angles:
\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)
\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B) ]
These formulas are essential for solving trigonometric equations, simplifying expressions, and working in calculus or physics problems involving waves or periodic behavior.
- The "sino + coso" formulas likely refer to trigonometric identities that involve combinations of the sine and cosine functions. There are a few important formulas and identities in trigonometry involving sine (sin) and cosine (cos). Here are the key ones:
Comments
Post a Comment